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Analysis and modelling of subgrid-scale motions
in near-wall turbulence
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(Received 19 July 1996 and in revised form 19 August 1997)

A numerical study of turbulent channel flow at various Reynolds numbers (Reτ = 115,
210, 300) is conducted in order to examine the requirements for a reliable subgrid
modelling in large-eddy simulations of wall-bounded flows. Using direct numerical
simulation data, the interactions between large and small scales in the near-wall
flow are analysed in detail which sheds light on the origin of the inverse cascade of
turbulent kinetic energy observed in the buffer layer. It is shown that the correlation
of the wall-normal subgrid stress and the wall-normal derivative of the streamwise
grid-scale velocity plays the key role in the occurrence of the inverse cascade. A
brief a priori test of several subgrid models shows that currently applied models are
not capable of accounting properly for the complex interactions in the near-wall
flow. A series of large-eddy simulations gives evidence that this deficiency may cause
significant errors in important global quantities of the flow such as the mean wall
shear stress. A study of the eddy-viscosity ansatz is conducted which reveals that
the characteristic scales usually employed for the definition of the eddy viscosity
are inappropriate in the vicinity of a wall. Therefore, a novel definition of the eddy
viscosity is derived from the analysis of the near-wall energy budget. This new
definition, which employs the wall-normal subgrid stress as a characteristic scale, is
more consistent with the near-wall physics. No significant Reynolds-number effects
are encountered in the present analysis which suggests that the findings may be
generalized to flows at higher Reynolds numbers.

1. Introduction
During the past two decades the large-eddy simulation (LES) technique has estab-

lished its role as a powerful research tool for the study of turbulent flows in geophysics
and engineering (see e.g. Galperin & Orszag 1993 or Härtel 1996 for more recent
reviews of the field). In LES the flow-geometry-dependent large-scale (grid-scale, GS)
motions are explicitly computed, while the small-scale (subgrid-scale, SGS) turbulence
is accounted for by a model.

In developing subgrid models it is typically assumed that the SGS turbulence is
in a state of approximate local isotropy. Consequently, the application of LES has
been particularly successful in the study of free shear flows and turbulence at high
Reynolds numbers, where approximate local isotropy often prevails. Currently large-
eddy simulation is widely utilized for the analysis and prediction of geophysical flow
phenomena; on the other hand, its use for engineering-type applications is still very
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limited because engineering flows often exhibit a number of complicating features
like solid walls, moderate Reynolds numbers and more complex flow geometries.

The key difficulties with the LES of wall-bounded flows originate in the presence of
a wall layer in which viscosity plays a major role and in which locally significant tur-
bulence structures may become extremely small. Essentially two different approaches
exist to treat this wall layer in a LES. In the first approach, which in practice is the
more common one, it is attempted to circumvent the very costly resolution of the
near-wall turbulence structures by bridging the wall region with the aid of empir-
ical boundary conditions for the outer layer (cf. Deardorff 1970; Schumann 1975;
Piomelli, Ferziger & Moin 1989). These empirical boundary conditions correspond to
the wall functions often applied in statistical turbulence simulations. In the second
approach a refined mesh is employed in the vicinity of solid boundaries in order
to resolve at least coarsely the most dominant near-wall structures. In general, no
further empirical information about the near-wall flow is required in this approach.
For high-Reynolds-number flows the application of approximate boundary condi-
tions appears to be the only feasible way to treat the wall layer in a LES. It must be
emphasized, however, that the near-wall turbulence structures may strongly influence
the entire flow field, and that it is hence desirable to treat them more accurately
whenever possible. More recently, Balaras & Benocci (1994) developed a new method
for the near-wall treatment which takes an intermediate position between the two
approaches outlined above. In their method a simplified set of equations, derived
from the two-dimensional boundary-layer equations, is solved on an embedded grid
between the wall and the first mesh point of the LES grid.

To develop subgrid models suitable for application in the highly inhomogeneous
wall layer, detailed knowledge of the prevailing physical mechanisms in this flow
regime is required. In this respect, the analysis of direct numerical simulation (DNS)
data has made considerable contributions in recent years (cf. Domaradzki et al. 1994;
Härtel et al. 1994; Horiuti 1993; Piomelli et al. 1989). An explicit filtering of the DNS
results provides the required GS and SGS velocity and pressure fields, from which
all further quantities of interest can be directly computed. A unique feature of DNS
data is that they allow SGS models to be examined prior to their implementation
by comparing exact and modelled SGS quantities for the same filtered flow field. A
comparison of this type is usually termed an a priori test.

It has frequently been suggested that the key role of the subgrid model is to provide
an exchange of energy between GS and SGS turbulence at roughly the correct rate
(Rogallo & Moin 1984). Instantaneously, the flux of energy between resolved and
unresolved scales is strongly intermittent, meaning that both the forward transfer from
larger to smaller eddies and the reverse transfer often termed ‘backscatter’ can be
encountered (cf. Domaradzki, Rogallo & Wray 1990; Piomelli et al. 1991). However,
on the average energy is usually assumed to be transferred from larger to smaller
scales which corresponds to the classical concept of an energy cascade. Since in this
case the smaller scales essentially act as a sink of energy for the larger ones, they may
efficiently be modelled by a dissipative eddy-viscosity ansatz on which virtually all
current SGS models are based. The picture of an energy cascade is valid for most free
flows, but cannot be applied to near-wall turbulence as was pointed out by Härtel
et al. (1994). Analysing DNS data of turbulent channel and pipe flows the authors
found that an inverse cascade of turbulent kinetic energy occurs in the buffer layer.
The magnitude of this inverse transfer is very sensitive to the cutoff wavenumber,
but it was found to depend little on the shape of the filter applied (Härtel & Kleiser
1997).
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The present paper deals with the LES of wall-bounded turbulent flows and ad-
dresses several questions raised by the study of Härtel et al. (1994). Among other
things the Reynolds-number dependence of their earlier findings is a major point
of concern. Two new direct simulations of turbulent channel flow were performed
and analysed during the course of the present study, one of them having a lower
(Reτ = 115) and the other one a higher Reynolds number (Reτ = 300) than the flows
considered by Härtel et al. (1994). After the governing equations have been laid out
in §2, the relevant parameters of these simulations will be given in §3 along with
a brief discussion of the numerical method. In §4 we present results of an analysis
of the near-wall energy budget which is more comprehensive than previous ones.
Subsequently in §5 the near-wall performance of three common subgrid models is
examined by a priori tests and a series of large-eddy simulations. A more funda-
mental investigation of the eddy-viscosity ansatz will then be conducted in §6 where
‘exact’ DNS information is used to evaluate the characteristic scales from which the
eddy viscosity is computed. A summary of our results together with some concluding
remarks is given in §7.

2. Governing equations
In LES any dependent flow variable f is divided into a GS part f̄ and a SGS part

f′, i.e. f = f̄+ f′. The definition of f̄ can be based on a spatial filtering performed by
convolving f with a filter function H (Leonard 1974):

f̄(x1, x2, x3, t) =

∫
D

3∏
i=1

Hi(xi − x′i,∆i) f(x′1, x
′
2, x
′
3, t) dx′1 dx′2 dx′3. (1)

The integration in (1) is extended over the whole domain D, and Hi denotes the filter
function in the ith direction. Several suitable filter functions have been suggested in
the literature, the most widely used ones among them being the Gaussian filter, the
box filter, and the cutoff filter in spectral space. In the present study the spectral
cutoff filter Hc

i has been used, which can conveniently be described by its Fourier

transform Ĥc
i :

Ĥc
i (ki) =

{
1 for |ki| 6 Kc

i = 2π/∆i

0 otherwise,
(2)

where ki designates the wavenumber. In (1) and (2) ∆i is the width of the filter in the
ith direction and Kc

i denotes the cutoff wavenumber.
A different splitting of the flow variables, which will also be employed here, is the

Reynolds decomposition, where a quantity g is split into a statistical mean value 〈g〉
and a fluctuation g̃, i.e.

g = 〈g〉+ g̃. (3)

Whenever the operator 〈·〉 is used here, it symbolizes an averaging over the wall-
parallel planes of the channel, the two channel halves, and all stored time levels of
the DNS. Such averages are subsequently referred to as global averages.

Filtering the continuity and Navier–Stokes equations yields the evolution equations
for the large scales. For an incompressible fluid of constant density % and constant
viscosity they read

∂ūk

∂xk
= 0, (4)
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∂ūi

∂t
+

∂

∂xk
(ūiūk) = − ∂p̄

∂xi
+
∂Qik

∂xk
+ ν

∂2ūi

∂xk∂xk
. (5)

In (4) and (5) ui denotes the velocity component in the ith direction, p the pressure,
ν the kinematic viscosity of the fluid, and the usual tensor notation is employed. The
effect of the unresolved scales appears in the SGS stress tensor Qij which consists of
two contributions

Qij = Cij + Rij , (6)

where

Cij = −(ūiu
′
j + u′iūj), Rij = −u′iu′j . (7)

Cij and Rij are usually termed SGS cross-stresses and SGS Reynolds stresses, respec-
tively.

For the temporal evolution of each component of the stress tensor Qij a budget
equation can be derived from the filtered and unfiltered equations of motion:

∂Qij

∂t
=

6∑
l=1

T
ij
l , (8)

with the individual terms T ij
l given by

T
ij
1 = −ūk

∂Qij

∂xk
− ūk

∂Lij

∂xk
,

T
ij
2 =

∂

∂xk
(uiujuk − ūiujuk − ūjuiuk − ūkuiuj + 2ūiūj ūk),

T
ij
3 =

∂

∂xi
(puj − p̄ūj) +

∂

∂xj
(pui − p̄ūi)− p

(
∂ui

∂xj
+
∂uj

∂xi

)
+ p̄

(
∂ūi

∂xj
+
∂ūj

∂xi

)
,

T
ij
4 = −

(
Qik

∂ūj

∂xk
+ Qjk

∂ūi

∂xk

)
−
(
Lik

∂ūj

∂xk
+ Ljk

∂ūi

∂xk

)
,

T
ij
5 = ν

∂2Qij

∂xk∂xk
,

T
ij
6 = 2ν

(
∂ui

∂xk

∂uj

∂xk
− ∂ūi

∂xk

∂ūj

∂xk

)
.



(9)

The term Lij = ūiūj − ūiūj in (9) denotes the so-called Leonard stresses (Leonard
1974) which are a function of the GS velocities only.

The budget equation for the kinetic energy of the GS motions EGS = (ūkūk)/2 is
obtained by multiplying the filtered Navier–Stokes equations by the GS velocity ūi.
In this equation the effect of the SGS motions on the energy balance of the resolved
flow field is given by the term

ūk
∂Qkl

∂xl
=

∂

∂xl
(ūkQkl)− QklS̄ kl , (10)

where S̄ ij denotes the GS rate-of-strain tensor

S̄ ij =
1

2

(
∂ūi

∂xj
+
∂ūj

∂xi

)
. (11)

The first term on the right-hand side of (10) accounts for a spatial redistribution of
GS kinetic energy due to SGS motions. The second term QklS̄ kl governs the exchange
of energy between GS and SGS turbulence, and is usually called ‘SGS dissipation’.
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Positive values of the SGS dissipation indicate a flux of kinetic energy from large
to small scales, whereas the transfer is reversed whenever it takes negative sign. In
this paper we will concentrate on the global average of the SGS dissipation which is
designated as ε hereafter, i.e.

ε = 〈QklS̄ kl〉. (12)

By application of (3) the global average of the SGS dissipation may be decomposed
into two parts, one of them being due to mean (MS) and the other due to fluctuating
rates of strain (FS), respectively (Härtel et al. 1994):

ε = 〈Qkl〉〈S̄ kl〉+ 〈Q̃kl ˜̄Skl〉 = εMS + εFS . (13)

In (13) the term εMS = 〈Qkl〉〈S̄ kl〉 means an enhancement of SGS turbulence in the

presence of mean-flow gradients. The second term εFS = 〈Q̃kl ˜̄Skl〉 accounts for a
redistribution of energy within the turbulence spectrum without affecting the mean
flow directly. An individual analysis of the terms εMS and εFS provides a more detailed
insight into the energy budget of the flow than can be obtained from considering
their sum only.

Since the current study is concerned with the LES of near-wall flows, most of the
results will be given in common wall units, i.e. normalized by the friction velocity
uτ = (τw/ρ)1/2 (τw denotes the wall shear stress) and ν, which are the appropriate
reference quantities for wall turbulence. Any quantity scaled in wall units will be
indicated by the usual superscript +.

3. DNS databases
For the present analysis we primarily employed a DNS database of turbulent

channel flow at a wall Reynolds number of about Reτ = 210 (based on friction
velocity uτ and channel half-width h). The simulation was performed by Gilbert &
Kleiser (1991) and the results have been validated carefully by comparison with other
simulations and recent experimental results. This simulation, denoted as simulation
II (SII) in the following, falls within the range of low Reynolds numbers where a
universal scaling of flow quantities in wall units cannot yet be expected (cf. Antonia
& Kim 1994; Wei & Willmarth 1989). Therefore, we conducted two further DNS,
one of them having a lower and the other a higher Reynolds number than simulation
II. These DNS will subsequently be referred to as simulation I and simulation III
(SI and SIII). The respective Reynolds numbers are Reτ = 115 and Reτ = 300.
A comparison of results obtained from the three databases should reveal whether
significant Reynolds-number effects exist.

3.1. Numerical method

The flow domain and the coordinate system used in the simulations are illustrated
in figure 1, where x1 denotes the streamwise, x2 the spanwise, and x3 the normal
direction. The respective lengths of the computational domain related to the channel
half-width h differ for the three simulations and were chosen such that the dominant
correlation lengths of the turbulence fields can be accommodated. For the simulations
at Reτ = 210 and 300 these correlation lengths are governed by the dynamics of the
large eddies in the core flow; for the smallest Reynolds number, on the other hand, the
elongated near-wall structures are more relevant. All simulations were conducted with
a constant mass flux Q. As initial condition, a laminar Poiseuille flow was employed
in SII with superimposed small-amplitude disturbances which trigger the transition to
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x3

x1x2

L2

L1

Figure 1. Computational domain and coordinate system.

Simulation I Simulation II Simulation III

ReCL 1973 3831 5662
ReQ 1667 3333 5000
Reτ 115 210 300
Geometry 24h× 12h× 2h 11.22h× 5.98h× 2h 12h× 6h× 2h
Grid 200× 160× 64 160× 160× 128 250× 240× 192
∆x+

1 13.7 14.8 14.4
∆x+

2 8.6 7.9 7.5
(∆x+

3 )min 0.138 0.064 0.04
(∆x+

3 )max 5.60 5.18 4.91
T+
sim 1174 980 612

NT 45 22 17
∆T+ 26.7 46.7 38.3

Table 1. Parameters of the DNS of turbulent channel flow. ReCL: Reynolds number based on
channel-centreline velocity, ReQ: Reynolds number based on bulk velocity, Reτ: Reynolds number
based on friction velocity, Tsim: total time span of the simulation, NT : number of permanently
stored time layers, ∆T : time span between two successive stored time layers.

turbulence. Simulations I and III were initialized with fully turbulent flow fields taken
from SII. In all cases data were assembled only after the first transient phase had
passed and a statistically stationary state was attained. The relevant parameters of the
three DNS such as the discretization and the total time span Tsim of the simulation are
given in table 1. The time span Tsim does not include the initial transients. Also given
in the table is the number NT of permanently stored time layers of each simulation
along with the time span ∆T between two successive time layers. In all cases ∆T is
sufficiently large to make sure that each two successive time layers of a simulation
are essentially statistically independent.

The numerical scheme used is based on a fully spectral spatial discretization with
Fourier expansions in the wall-parallel directions and Chebyshev polynomials in x3

(see Kleiser & Schumann 1984). The time discretization is done in a semi-implicit
manner where an explicit method is employed for the nonlinear terms together with
a Crank–Nicolson scheme for the viscous terms and the pressure. In SII an Adams–
Bashforth method was utilized for the explicit part, while a third-order-accurate
Runge–Kutta scheme was applied in SI and SIII. The evaluation of the nonlinear
terms is done pseudospectrally. To eliminate aliasing errors, the 3/2 rule (see Canuto
et al. 1988) was applied in all three directions in SI and SII. In SIII, where no full
dealiasing could be performed owing to limited computational resources, the 3/2 rule
was applied in the spanwise direction only.
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Figure 2. Mean-velocity profiles of turbulent channel flow in wall units. Results of three direct
numerical simulations at different Reynolds numbers. Reτ = 115 (SI), 210 (SII), and 300 (SIII).
Curve 1: 〈u+

1 〉 = y+, curve 2: 〈u+
1 〉 = 2.44 ln y+ + 5.17 (Dean 1978).

3.2. Mean-velocity profiles

For a brief comparison of the three direct simulations, the respective mean-velocity
profiles are displayed on a semi-logarithmic scale in figure 2 (see Härtel 1994 for a
more detailed assessment). Here and in what follows the wall distance y will generally
be used rather than the wall-normal coordinate x3. All of the velocity profiles exhibit
the characteristic linear increase within the viscous sublayer (y+ 6 5), but a marked
logarithmic regime can be discerned for the two higher Reynolds numbers only. The
universal logarithmic law of the wall according to Dean (1978)

〈u1〉+ = 2.44 ln y+ + 5.17, (14)

has been included in the figure for comparison, which makes it obvious that the profile
of SIII is already very close to the experimentally established high-Reynolds-number
law.

4. Analysis of the turbulent energy budget
The SGS effects in a turbulent flow depend qualitatively and quantitatively on the

width of the filter function applied. Generally speaking, the filter width should be as
large as possible in order to minimize the computational needs of a simulation, but
larger filter widths give rise to a more complex SGS turbulence which puts higher
demands on the subgrid models. If a considerable fraction of the kinetic energy
resides in the small scales, the SGS turbulence will contain structures which play
an important role in the whole turbulence dynamics. Therefore, judicious guidelines
are needed for the spatial resolution which ensure that important features like the
evolution of near-wall streaks or bursts can be captured by the numerical grid. Zang
(1991) suggested grid spacings of about ∆x+

1 = 80 in the streamwise and ∆x+
2 = 30

in the perpendicular wall-parallel direction. This corresponds approximately to the
following cutoff wavenumbers of the cutoff filter (2):

(Kc
1)+ = 0.039, (Kc

2)+ = 0.104. (15)

According to current practice in LES (see e.g. Härtel et al. 1994; Piomelli 1993),
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Simulation I Simulation II Simulation III

(Kc
1)+ = 2π/∆+

1 0.041 0.042 0.042
(Kc

2)+ = 2π/∆+
2 0.083 0.08 0.083

Table 2. Cutoff wavenumbers used in the filtering of the DNS databases (∆i is the filter width in the
ith direction). Kc

1: streamwise direction, Kc
2: spanwise direction. Wavenumbers given in wall units.

0.1

0 50 100

y+

0.2

0+

0+–eMS+

eMS+

Figure 3. Total turbulence production P and its components P− εMS and εMS due to grid-scale
and subgrid-scale turbulence, respectively. Results for simulation II.

a resolution of ∆x+
2 = 30 appears to be the upper limit, while in the streamwise

direction a much coarser resolution may still suffice. The filter widths used in the
present analysis are summarized in table 2. No filtering was performed in the normal
direction x3, since in this direction a rather fine resolution is required to resolve the
steep mean-flow gradients. This implies that in our case the following equalities hold:

〈g〉 = 〈g〉 = 〈ḡ〉. (16)

Furthermore, since we employ a spectral cutoff filter,

〈Cij〉 = 0, i.e. 〈Qij〉 = 〈Rij〉. (17)

If the filter widths (15) are employed, the SGS turbulence will still contain dynami-
cally significant turbulence structures in the near-wall region below y+ = 30, say. The
relative importance of GS and SGS turbulence is illustrated by figure 3, where the
common turbulence production P

P = 〈ukul〉〈Skl〉 = 〈ūkūl〉〈Skl〉+ 〈u′lu′k〉〈Skl〉 (18)

and its respective contributions due to resolved and unresolved motions are depicted.
The second equality in (18) holds by virtue of (16) and (17). Moreover, it can be
shown with the aid of (16) and (17) that the contribution of the unresolved motions
〈u′lu′k〉〈Skl〉 is identical to εMS in the present case. Figure 3 illustrates that the SGS
turbulence is of minor importance with respect to the turbulence production in the
core flow, but plays a significant role close to the walls. In the very near-wall region
(y+ < 10 in figure 3) GS and SGS turbulence contribute almost equally to P. This
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Figure 4. SGS dissipation ε. Comparison of results for different Reynolds numbers.
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0.04
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SII
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y+
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(b)

–0.02

Figure 5. SGS dissipation εMS due to mean rates of strain (a) and εFS due to fluctuating rates of
strain (b). Comparison of results for different Reynolds numbers.

makes clear why the near-wall flow is particularly sensitive to an accurate SGS
modelling.

4.1. SGS dissipation

Figure 4 shows the global averages of the SGS dissipation as computed from the
DNS databases using the cutoff wavenumbers given in table 2. Results are displayed
for the region y+ 6 100 which amounts to one third of the channel half-width h in
SIII, but essentially equals h in SI. From the figure it is seen that ε increases slightly
with Re, while being qualitatively almost independent of Reynolds number. In all
cases the SGS dissipation is non-negative throughout the channel, meaning that on
the average the net transfer of kinetic energy is from GS to SGS motions.

The individual components εMS and εFS of the SGS dissipation are given in figure 5.
Again a good agreement in the results for the different Reynolds numbers is seen.
The quantitative differences in the results are somewhat more pronounced for εFS

than for εMS . However, in all cases εFS exhibits a marked kink within the buffer layer
(5 6 y+ 6 30) and attains negative values which indicate the reverse flux of kinetic
energy already observed by Härtel et al. (1994). Figure 5 shows that this important
characteristic of the wall layer is only little affected by the Reynolds number. The
slight quantitative differences observed probably have little significance: since the
magnitude of the inverse transfer is very sensitive to the cutoff wavenumber Kc

2

(Härtel et al. 1994), changes in Kc
2 of a few percent may result in changes in εFS
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0.04

0.02

0 50 100

y+

e i
FS+

–0.02

0

i =1
2
3

Figure 6. Splitting of εFS into three contributions εFSi from the budget equations for 〈˜̄ui ˜̄ui〉/2
(no summation). Definition of εFSi according to (20). Results for simulation II.

which are of the same order of magnitude as the differences between the results for
the different Reynolds numbers seen in figure 5.

To elucidate the origin of the reverse energy cascade in more detail, we analysed
the relevant energy transfer terms. The main results are presented in the following. In
a first step we examined which of the GS velocity components ˜̄ui are predominantly
affected by the inverse cascade. To this end the exchange terms εFSi which enter
the three budget equations were evaluated for the individual components of the GS
turbulent kinetic energy 〈˜̄ui ˜̄ui〉/2 (no summation):

εFSi = 〈Q̃ik ∂ ˜̄uj/∂xk〉 (j = i). (19)

Results for εFSi , obtained from SII, are given in figure 6. It is seen that the exchange
of GS and SGS kinetic energy acts almost exclusively on the velocity component
˜̄u1 in the streamwise direction, while the spanwise and wall-normal velocities play
a marginal role. The sharp kink within the buffer layer, observed in the curve for
εFS1 , clearly corresponds to the kink in εFS discussed above. Decomposing εFS1 into its
components due to Q11, Q12 and Q13, respectively, reveals that the reverse transfer is
primarily caused by the stress component Q13, i.e. the subgrid stress aligned with the
mean rate of strain. The contribution of Q13 to εFS1 , hereafter denoted by εFS1,13,

εFS1,13 = 〈Q̃13∂ ˜̄u1/∂x3〉, (20)

is shown in figure 7, where the pronounced negative minimum in the buffer layer
becomes obvious.

For the further analysis we will now consider the evolution equation for εFS1,13. This

equation is obtained by differentiating εFS1,13 with respect to time which yields

∂

∂t
εFS1,13 =

〈
∂Q̃13

∂t

∂ ˜̄u1

∂x3

〉
+

〈
Q̃13

∂

∂t

∂ ˜̄u1

∂x3

〉
. (21)

The required time derivative of Q13 is given by (8), while the time derivative of
∂ ˜̄u1/∂x3 is obtained by differentiating the x1-momentum balance with respect to x3.
We have evaluated both terms on the right-hand side of (21), but results will only be
shown here for the first term which we found to be more revealing concerning the
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0 50 100
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e1,13
FS+

–0.03

0

Figure 7. Contribution of the SGS stress component Q13 to εFS1 . Results for simulation II.
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Figure 8. Global averages of the terms T̃ 13
l ∂ ˜̄u1/∂x3 (see equation (8)) from the budget equation

∂/∂t
〈
Q̃13 ∂ ˜̄u1/∂x3

〉
. Results for simulation II.

origin of the inverse transfer. Using (8) it can be written as〈
∂Q̃13

∂t

∂ ˜̄u1

∂x3

〉
=

6∑
l=1

〈
T̃ 13
l

∂ ˜̄u1

∂x3

〉
. (22)

The results for the six individual terms on the right-hand side of (22) are summarized
in figure 8. For l = 1, 4 the contributions due to the Leonard stresses Lij , which are a
function of the GS flow field only, have been excluded. From the figure it is seen that
the viscous diffusion and viscous dissipation (l = 5, 6) play an important role in the
immediate vicinity of the wall, but may be neglected above the viscous sublayer. The
remaining four terms, being comparable in magnitude, are significant throughout the
channel. Regarding the origin of the reverse transfer of energy within the buffer layer,
the results suggest that the production term T̃ 13

4 , which is roughly balanced by the
pressure term T̃ 13

3 , plays a decisive role. Note that negative values of
〈
T̃ 13

4 ∂ ˜̄u1/∂x3

〉
represent an enhancement of the reverse transfer due to εFS1,13. Comparing figures 7

and 8 reveals that positive and negative signs of εFS1,13 approximately coincide with

positive and negative signs of
〈
T̃ 13

4
˜̄u1/∂x3

〉
.

From (9) it was seen that T 13
4 consists of six individual terms (after excluding those

containing Lij), and hence
〈
T̃ 13

4
˜̄u1/∂x3

〉
may be split into the corresponding six con-

tributions for further analysis. The contributions of these six terms to
〈
T̃ 13

4 ∂ ˜̄u1/∂x3

〉
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Results for simulation II.

are summarized in figure 9. As can be seen from the curves, the term −Q33 ∂ū1/∂x3

is the dominant one throughout the channel and governs the sum
〈
T̃ 13

4
˜̄u1/∂x3

〉
com-

pletely. Since the covariance of fluctuations in −Q33 ∂ū1/∂x3 and ∂ū1/∂x3 is directly
connected to the relation between the GS shear ∂ū1/∂x3 and the wall-normal SGS
stress Q33, it may be inferred from the results in figure 9 that close to the wall a
systematic phase shift prevails between the latter two quantities. This is illustrated
more clearly by the respective correlation coefficient % between −Q33 and ∂ū1/∂x3

shown in figure 10. The correlation coefficient % of two fluctuating quantities f and g
is defined in the usual way:

%(f̃, g̃) =
〈
f̃ · g̃

〉
/rms(f̃) · rms(g̃), (23)

where rms denotes the root-mean-square fluctuation. In figure 10 a region of negative
correlation is seen which exhibits a minimum located well within the buffer layer
and which extends much further into the core of the channel than did the negative
parts in the other curves discussed above. For comparison, the correlation coefficients
between ∂ ˜̄u1/∂x3 and the negative of the two components R̃33 and C̃33 of Q̃33 is
included in the figure, giving evidence that concerning the correlation with ∂ ˜̄u1/∂x3

no significant difference exists between the cross- and SGS Reynolds stresses. In
figure 10(b) the correlation coefficient between ∂ ˜̄u1/∂x3 and −Q̃33 is compared with
the corresponding correlation coefficients between ∂ ˜̄u1/∂x3 and the negative of the
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streamwise and spanwise SGS normal stresses Q̃11 and Q̃22, respectively. All three
stresses exhibit a similar behaviour, but it is seen that the wall-normal stress Q33,
featuring the most extended region of negative correlation, plays a particular role. In
§6 we will discuss how this finding may be exploited in order to derive a definition
of the SGS eddy viscosity which is more consistent with the dominant features of
near-wall turbulence than are the definitions usually applied.

5. Assessment of subgrid models
The analysis in the preceding section revealed the complicated structure of the

interactions between GS and SGS motions in the near-wall region. Whether or not
currently applied subgrid models are capable of taking proper account of these
interactions will now be examined by an a priori test of three more widely applied
models. One of these models, the Smagorinsky model, is then employed in a series of
large-eddy simulations of turbulent channel flow at various Reynolds numbers.

All SGS models examined here are eddy-viscosity models, where the deviatoric part
τij of the SGS stress tensor Qij is set proportional to the rate-of-strain tensor S̄ ij of
the resolved flow field:

τij := Qij − δij Qkk/3 = 2 νt S̄ ij . (24)

The closure problem is thus reduced to finding a (scalar) eddy viscosity νt as a function
of the resolved flow variables. Before the results of the a priori test are discussed we
will briefly introduce the three different models, but for more details the reader is
referred to the literature cited below.

The first model is the classical Smagorinsky (1963) model, where the SGS eddy
viscosity is derived under the assumption that the small-scale turbulence is locally in
equilibrium regarding production and dissipation of kinetic energy. This leads to

νt = (CS∆x)2 ‖S̄‖ where ‖S̄‖ = (2 S̄ kl S̄ kl)
1/2. (25)

In (25) the grid size of the computational mesh is denoted by ∆x and CS is a yet
undetermined model constant, named the Smagorinsky constant. For homogeneous
isotropic turbulence exhibiting an infinitely extended inertial range, Lilly (1967)
analytically derived a value of CS = 0.17 which, however, was found to be too large
in practice. Therefore the more common value CS = 0.1 will be used in the subsequent
analysis (Deardorff 1970). Following Piomelli, Moin & Ferziger (1988) ∆x is computed
as the geometric mean of the mesh sizes in the three coordinate directions and the
eddy viscosity is supplied with an additional Van Driest-type damping function (see
Van Driest 1956) to ensure the proper near-wall behaviour νt ∝ (y+)3. This yields

νt = C2
S

[
1− exp

(
−(y+/A+)3

)]
(∆x1∆x2∆x3)

2/3 ‖S̄‖. (26)

The constant A+ in (26) is set to the common value A+ = 25 here.
The second model is the structure-function model proposed by Métais & Lesieur

(1992). Following Chollet & Lesieur (1981) the authors assumed that the proper SGS
velocity scale, on which the eddy viscosity should be based, is given by the square-
root of the kinetic energy residing at the cutoff wavenumber Kc. While Chollet &
Lesieur defined the eddy viscosity in spectral space, Métais & Lesieur derived a
physical-space representation of the model by resorting to the second-order velocity-
structure function. Here we will use a two-dimensional version of this model, where
the structure-function is computed from velocity differences taken in the wall-parallel
planes (see Comte, Lee & Cabot 1990). To achieve an improved near-wall behaviour,
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Figure 11. SGS dissipation εMS due to mean rates of strain (a) and εFS due to fluctuating rates of
strain (b). Comparison of DNS results with various SGS models. Results for simulation II.

the resulting eddy viscosity is supplied with a wall-damping function D(y+) = (1 −
exp(−y+/25))2 (see Zang, Chang & Ng 1992).

The third model examined here is the dynamic Smagorinsky model suggested by
Germano et al. (1991) and improved by Lilly (1992). In the dynamic Smagorinsky
model CS is no longer assumed to be constant, but is considered a function of
space and time. This is motivated by the experience that the optimum value of the
Smagorinsky constant may greatly vary from flow to flow, ranging between 0.07 and
0.24 (Rogallo & Moin 1984; Schumann 1991). It is hence desirable to avoid an ad
hoc specification of the Smagorinsky constant by somehow adjusting CS to the actual,
local state of the flow. In the dynamic model this is achieved by introducing a second
filter (the so-called ‘test filter’) in addition to the original LES filter. Assuming that
the SGS stresses due to both the original filter and the test filter are similar and can
be modelled using the identical ansatz, a relation for the evaluation of CS can be
derived. In the present study the model is employed in an averaged version, where
CS is taken as a function of time and the inhomogeneous coordinate x3 only, while
being constant within the homogeneous wall-parallel planes. A fully localized version
of this model has also been devised, but was not found to be clearly superior to
the averaged one in cases where directions of homogeneity are present in the flow
(Ghosal et al. 1995).

5.1. A priori test

For the a priori test the models were applied to the filtered velocity fields of SII and the
SGS dissipation was then evaluated with the modelled stresses. The respective results
for εMS and εFS are shown in figure 11, along with the correct data obtained from
the DNS. It is seen that the results for the structure-function model are significantly
in excess of the DNS data, which confirms conclusions already arrived at by Comte
et al. (1990). All models appear to give qualitatively satisfactory results with respect
to εMS , but the curves for εFS reveal that none of them captures the inverse cascade
of energy. Rather, the modelled transfer of energy within the turbulence spectrum is
from GS to SGS motions throughout the channel. For all models εFS monotonically
increases from the wall to a global maximum located at about y+ = 25 which gives
rise to significant differences between the modelled and correct dissipation over the
whole buffer layer. Concerning the adjustment of CS as implemented in the dynamic
model used here, an interesting consequence can be drawn from figure 11. Since CS
was assumed to be a function of wall distance and time only, it does not affect
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the correlation between SGS stresses and GS rates of strain within the wall-parallel
planes. Therefore both εMS and εFS are directly proportional to CS at each wall-normal
position. Within the buffer layer the dynamically obtained values for CS are clearly
too large concerning εFS , but slightly too small concerning εMS . This shows that in the
averaged version of the dynamic model the constant cannot be adjusted such that a
satisfactory modelling of both εMS and εFS is achieved.

If one of the above models is employed in a LES, one may expect that the excessive
values of the modelled dissipation εFS degrade the LES results within the buffer
layer. This will probably affect the whole near-wall flow, since in the buffer layer
the maximum production of turbulent kinetic energy occurs. Simultaneously, the
transport of turbulence energy takes its negative extremum there, meaning that an
excessive damping of turbulence cannot be compensated by additional wall-normal
transport. Of crucial importance is the fact that the near-wall flow and the core flow
are essentially decoupled by the logarithmic regime where turbulence is approximately
in equilibrium, especially at high Reynolds numbers. Consequently, the quality of the
simulation results in the outer flow should have little effect on the quality of the
results in the near-wall region and vice versa. Whether or not these presumptions are
confirmed by an a posteriori test, i.e. by actual large-eddy simulations, is examined in
§5.2.

5.2. A posteriori test

For the a posteriori test we performed LES of turbulent channel flow for three bulk
Reynolds numbers ReQ identical to those of the direct simulations. The computational
domains used for these LES were the same as those used for the DNS (see table 1),
and the grid sizes in the spanwise and streamwise directions were chosen such that
they approximately correspond to a filtering with the cutoff wavenumbers given in
table 2. The corresponding discretizations used in the simulations are

ReQ = 1667 : N1 ×N2 ×N3 = 36× 36× 32,

ReQ = 3333 : N1 ×N2 ×N3 = 32× 32× 64,

ReQ = 5000 : N1 ×N2 ×N3 = 48× 48× 96.

 (27)

Since the a priori test did not reveal significant qualitative differences between the
three subgrid models, only the Smagorinsky model was employed in the simulations.
The numerical method used for the LES is essentially the same as the one used for
the DNS and is described in Härtel (1994).

It was already noted that results of a LES with the Smagorinsky model (26) may
depend considerably on the constant CS . Therefore a proper choice of CS is of primary
importance. Before the LES were conducted, we determined an optimized value of
CS for the three different Reynolds numbers by requiring that the overall exchange
of kinetic energy between GS and SGS motions should be represented correctly by
the model. The corresponding optimization condition reads〈

τmodkl S̄ kl
〉
D,t

=
〈
τDNSkl S̄ kl

〉
D,t
, (28)

where 〈·〉D,t indicates an averaging over the whole computational domain and all time
layers stored. The superscripts mod and DNS in (28) denote the modelled stresses and
the stresses computed from the DNS data. The respective values of the optimized
Smagorinsky constant, termed C∗S hereafter, are given in table 3. The significance of
C∗S will become evident from the results presented below.
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ReQ = 1667 ReQ = 3333 ReQ = 5000

C∗S 0.078 0.100 0.114

Table 3. Energetically optimized Smagorinsky constant C∗S for various Reynolds numbers ReQ.
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Figure 12. Mean-velocity profiles of turbulent channel flow. Comparison of DNS data with LES
results at various bulk Reynolds numbers ReQ. The bulk velocity uQ of simulation I has been used
as the reference velocity U ref here. For each Reynolds number the mass flux is the same for DNS
and LES. Model constants: ReQ = 1667, 3333: CS = C∗S , ReQ = 5000: CS = 0.96C∗S .

ReQ = 1667 ReQ = 3333 ReQ = 5000

CS = C∗S CS = C∗S CS = 0.96C∗S

ReCL Reτ ReCL Reτ ReCL Reτ
DNS 1973 115 3831 210 5662 300
LES 2061 99 3890 189 5721 273
εRe 4.5% 14% 1.5% 10% 1% 9%

Table 4. Centreline Reynolds number ReCL and wall Reynolds number Reτ for DNS and LES.
Results for various bulk Reynolds numbers ReQ. The relative error in the LES results related to the
DNS results is denoted by εRe.

5.2.1. LES results for different Reynolds numbers

In figure 12 the mean-velocity profiles of the direct simulations are displayed
together with velocity profiles obtained from LES. For the two lower Reynolds
numbers CS was set to C∗S , while for the highest Reynolds number CS was set to a value
slightly lower than the optimized one. The reason is that the latter LES was conducted
with a guess for C∗S , since the full DNS results were not yet available when the LES
was performed. Note that the velocity profiles in figure 12 are not given in wall units,
but were non-dimensionalized by the channel half-width h and the bulk velocity uQ of
SI (uQ is the mass flux in x1 divided by the density ρ and the channel cross-section).
Like in the DNS, the mass flux Q was also prescribed in the LES, and consequently
the bulk Reynolds numbers ReQ are identical for DNS and LES. On the other hand,
the centreline Reynolds numbers ReCL and the wall Reynolds numbers Reτ are free
to fluctuate in time. The averages of these Reynolds numbers are given in table 4.
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Figure 13. Mean-velocity profiles in wall units. Comparison of DNS and LES results for various

Reynolds numbers. Curve 1:
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= 2.44 ln y+ + 5.17.

Figure 12 reveals that away from the wall the quality of the LES results improves
significantly with increasing Reynolds number. This is confirmed by inspection of
table 4, where the relative error in ReCL is seen to decrease from about 5% for the
lowest Reynolds number to approximately 1% for the highest one. This result is not
surprising, since both theoretical considerations and practical experience suggest that
within the outer flow the Smagorinsky model is a more efficient subgrid model at
higher than at lower Reynolds numbers.

From figure 12 it appears that the errors in the LES results are generally larger in
the near-wall region than in the core flow, as was to be expected from the a priori test.
To quantify the errors in the wall layer more precisely, one may directly compare
the resulting wall Reynolds numbers Reτ of DNS and LES. From table 4 it is found
that the relative error of the LES decreases from about 14% for ReQ = 1667 to 9%
for ReQ = 5000, which indicates that these errors are much less reduced at higher
Reynolds numbers than were those in ReCL. Figure 13 gives the velocity profiles
from figure 12 in wall units on a semi-logarithmic scale. Clearly, both DNS and LES
correctly give a linear velocity profile below y+ ≈ 5, but above a wall distance of
y+ ≈ 10 the curves for the DNS and the LES diverge significantly. Too large values are
obtained from the LES, as a consequence of the discrepancies in the mean-velocity
gradients at the wall. Figure 13 shows that for the LES a developed logarithmic
range exists for ReQ = 5000 only, while for the DNS it is clearly discernible for
ReQ = 5000 and 3333. The rather poor LES results for the two lower Reynolds
numbers reflect the much stronger coupling between wall layer and core flow in these
cases.
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Figure 14. Mean-velocity profiles of turbulent channel flow in wall units. Comparison of DNS

results with LES results for various values of the Smagorinsky constant CS . Curve 1:
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u+

1

〉
= y+,

curve 2:
〈
u+
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〉
= 2.44 ln y+ + 5.17.

5.2.2. LES results for different values of CS

From the above results one might speculate that (28) is not the appropriate
optimization of the Smagorinsky constant in the present case. Generally speaking,
lower values of CS should result in increased turbulence fluctuations and consequently
in steeper velocity profiles at the wall. Conversely, higher values of CS damp the
resolved scales more strongly which can be expected to result in reduced wall gradients.
To examine the effect of CS , three series of LES with a systematic variation of CS
were conducted at the different bulk Reynolds numbers. As an example, figure 14
shows the resulting mean-velocity profiles of three of the simulations at ReQ = 3333,
where the model constant was set to CS = C∗S , CS = C∗S/2 and CS = 0, respectively.
Owing to the scaling used, all curves collapse in the viscous sublayer, but significant
differences become visible beyond the lower edge of the buffer layer. The simulation
with CS = 0 (i.e. with no model at all) exhibits a developed logarithmic regime with
the correct slope, but the velocities are considerably below the DNS curve throughout.
This illustrates that too steep wall gradients result if no subgrid model is employed. In
figure 14 the best agreement between LES and DNS is achieved for CS = C∗S/2 which
suggests that this choice of the Smagorinsky constant might be more appropriate than
the optimized value C∗S . Note, however, that for CS = C∗S/2 the integrated dissipation
due to the SGS model accounts for merely a quarter of the correct one, owing to the
fact that the modelled subgrid stresses (26) are proportional to C2

S . For a conclusive
assessment of the influence of CS it is necessary to consider the resulting GS turbulent
fluctuations in addition to the mean-velocity profiles. In figure 15 the averaged GS
turbulent kinetic energy EGS

t ,〈
EGS
t

〉
= 1

2

〈
˜̄uk ˜̄uk

〉
=
〈
EGS

〉
− 1

2
〈ūk〉 〈ūk〉 , (29)

is depicted for the three LES together with filtered and unfiltered DNS results. To
allow a direct quantitative comparison, the bulk velocity uQ (being the same for all
LES and the DNS) has been chosen as reference velocity here. It is observed that for
CS = 0 and CS = C∗S/2 the GS turbulent kinetic energy is considerably in excess of
the filtered DNS results, which illustrates the insufficient damping of the large-scale
turbulence in these cases.

In figure 15 CS = C∗S yields the best agreement between LES and filtered DNS,
but a direct relation between this agreement and the optimization (28) cannot be



Subgrid-scale motions in near-wall turbulence 345

DNS unfiltered)
DNS
LES (Cs=C*s)
LES (Cs=C*s/2)
LES (Cs=0)

(
0.02

0.01

0 0.5 1.0

y/h

ReQ =3333

©EGS
t /u2

Qª

×

×

×

Figure 15. Averaged turbulence energy EGS
t of the grid-scale motions normalized by the square of

the bulk velocity uQ. Comparison of DNS results (simulation II) with LES results for various values
of the Smagorinsky constant CS .

inferred. Since the production of turbulent kinetic energy directly depends on the
mean-flow gradients, the errors in the mean-velocity profile (see figure 14) strongly
affect the entire energy budget of the GS turbulence. The satisfactory performance
of the Smagorinsky model for CS = C∗S may hence be a mere coincidence. Figures 14
and 15 show that the Smagorinsky constant cannot be optimized in such a way that
good results are achieved with respect to both mean-velocity profiles and turbulent
fluctuations.

A remark may be in order here concerning the comparison of LES results with
unfiltered and filtered DNS data. The unfiltered turbulent kinetic energy of SII was
included in figure 15 for comparison. It is seen that the LES results for CS = C∗S/2 are
in much better agreement with these data than with the filtered ones. If a comparison is
based on unfiltered data from simulations or experiments, CS ≈ 0.5C∗S may appear to
be the optimum choice for the Smagorinsky constant, giving a satisfactory agreement
concerning the mean-velocity profile and the turbulence intensities. However, figure 15
reveals that a considerable amount of energy resides within the SGS motions in
the near-wall flow, which makes clear that conclusive results can only be obtained
if a comparison is based on appropriately filtered reference results. The use of
unfiltered data, on the other hand, may lead to erroneous conjectures about the
model performance in the near-wall flow.

The findings for ReQ = 3333 may be generalized for the other bulk Reynolds
numbers considered here. This is illustrated by figure 16, where the relative error ∆τw
in the wall stress,

∆τw =
τw,LES − τw,DNS

τw,DNS
=
Re2

τ,LES − Re2
τ,DNS

Re2
τ,DNS

, (30)

is plotted as a function of CS for all LES we performed. Note that the averaged wall
stress is directly related to the driving pressure gradient and is hence one of the most
interesting integral quantities of the flow. In figure 16 the Smagorinsky constant is
given in normalized form CS/C

∗
S on the abscissa. The suitability of this normalization,

and hence the significance of C∗S , becomes evident from the fact that the curves for
the different Reynolds numbers almost collapse. The a priori test already suggested
that the near-wall errors of the LES should depend little on the Reynolds number,
which is now fully confirmed by figure 16.
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ReQ.

The results in figure 16 reveal that concerning τw the best results are generally
obtained with CS ≈ 0.5C∗S . If no model is applied (CS = 0), the computed wall stress
is too large by approximately +15%, while an error of about −20% is observed
for values of CS close to C∗S . The present results may be compared with results
from Piomelli et al. (1988) who considered turbulent channel flow at a wall Reynolds
number of about Reτ = 180. The authors reported a difference of −18% in the
friction coefficient cf = 2 τw/u

2
Q between a DNS and a LES in which a cutoff filter

and a Smagorinsky model with a constant of CS = 0.1 were applied. In contrast to
our study where the same mass flux is prescribed in both DNS and LES, Piomelli
et al. (1988) conducted their direct and large-eddy simulations for the same wall
Reynolds number Reτ. However, the difference in wall friction between the LES and
a DNS with the identical mass flux may be estimated from their results with the aid

of the relation Reτ ∝ Re
7/8
Q (Dean 1978). This gives an error of slightly more than

∆τw = −20% which is in excellent agreement with our findings.
The present analysis was made for the Smagorinsky model only, but we expect

that the findings may essentially be generalized to similar eddy-viscosity models. For
example, Germano et al. (1991) compared the dynamic model with the Smagorinsky
model for a channel flow at ReCL = 6100, but regarding the mean-velocity profiles
or the turbulence intensities no significant differences between the two models were
found. More recently Horiuti (1993) examined different SGS models, among them
the Smagorinsky model and a new model which will briefly be introduced in the next
section. Among other things, Horiuti compared LES and DNS results of turbulent
channel flow at Reτ = 390. Consistent with the present findings, all LES showed a
good agreement with the DNS data concerning the mean-velocity profile, but the
turbulence intensities were clearly too high.

6. An improved definition of the SGS eddy viscosity
The eddy-viscosity ansatz is a particularly convenient approach to model the

subgrid stresses and has become most common in LES. Therefore it is of interest
to clarify whether the shortcomings of current SGS models, which were discussed
in the preceding section, are inherent in the eddy-viscosity ansatz. To this end we
will compare three definitions of the eddy viscosity in this section, which differ with
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respect to the characteristic scales used. In the present comparison these characteristic
scales are taken from DNS results (SII) directly which keeps the investigation free
of further modelling assumptions. This, however, implies that the respective eddy
viscosities cannot directly be utilized in a LES. For simplicity we will still denote
them as ‘models’ in this section. In order to derive applicable subgrid models from the
eddy viscosities examined here, one might resort to an approximate evaluation of the
characteristic scales with the aid of a scale-similarity assumption (see Horiuti 1993)
or some test filtering similar to that employed in the dynamic Smagorinsky model. In
this section we will apply the same filter widths that were used in the analysis of the
energy budget in §4 (see table 2).

To evaluate the eddy viscosity νt in (24), two characteristic scales of the SGS
turbulence need to be specified. For example, a time scale T and a (quadratic)
velocity scale E can be employed:

νt ∝ T · E. (31)

In general, the selection of the most appropriate characteristic scales is no trivial
task and may strongly depend on the actual flow. In LES it is common to relate
E to the SGS kinetic energy ESGS = (u′ku

′
k)/2, while the grid size ∆x is taken as

a characteristic length scale L (which corresponds to setting T = ∆x/E1/2). This
definition of the eddy viscosity was studied e.g. by McMillan & Ferziger (1979)
who analysed homogeneous isotropic turbulence. For wall-bounded flows one should
supply an additional damping function D(y+) to ensure the proper near-wall limiting
behavior νt ∝ (y+)3. The resulting eddy viscosity, referred to as ‘model A’ hereafter,
reads

νt = D(y+)CA ∆x( u′ku
′
k)

1/2, D(y+) = 1− exp(−(y+/25)2), (32)

where ∆x = (∆x1∆x2∆x3)
1/3. In (32) CA denotes a yet undetermined constant. For

homogeneous isotropic turbulence CA can be derived analytically which yields (see
Härtel 1994)

CA =
1

π

(
2

3α

)3/2

, (33)

where α denotes the Kolmogorov constant. In more general cases the constant needs
to be determined empirically according to some additional condition. We applied the
optimization (28) here which yields a value of CA = 0.073 for Reτ = 210 and the
given filter widths.

Horiuti (1993) suggested an alternative definition of the eddy viscosity, where E is
evaluated using the wall-normal SGS velocity only, i.e. where (u′3u

′
3)/2 is employed

to evaluate E rather than (u′ku
′
k)/2. This model, named ‘model B’ in this section,

utilizes the quadratic damping of the normal velocity component close to the wall,
thus avoiding additional empirical near-wall corrections. The complete definition of
the eddy viscosity reads

νt = CB ∆x
u′3u

′
3

(u′ku
′
k)

1/2
. (34)

Like for model A, ∆x is computed as ∆x = (∆x1∆x2∆x3)
1/3. The constant CB in (34)

can be determined from the normalization (28) which gives a value of CB = 0.197 in
the present case.

The analysis in §4 confirms that close to the wall the normal component of the
SGS kinetic energy provides a better velocity scale than the total SGS kinetic energy.
This holds not only with respect to the near-wall damping of the turbulence, but
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Figure 17. (a) Contribution of the SGS stress component Q13 to εFS1 . (b) Correlation coefficient

between τ̃13 and ˜̄S13. Comparison of DNS data and a priori results for various SGS models. Results
for simulation II.

also with respect to subtle details of the interactions between GS and SGS motions.
Figures 7 and 9 suggest that τ13 should directly be set proportional to Q33 ∂ū1/∂x3.
This is equivalent to setting τ13 proportional to Q33 S̄13, because from our analysis
we found that the gradient ∂ū3/∂x1 plays only a marginal role. Since the respective
results in §4 were given in wall units, this implies that the time scale T is set equal
to the viscous time scale tw = ν/u2

τ of the wall layer. Consequently, the eddy viscosity
should be computed as

νt = −CC
Q33

u2
τ

ν. (35)

The above definition will be called ‘model C’ in the remainder of the paper. From
the normalization (28) a value of CC = 6.42 is computed for the model constant. In
model C the limiting behaviour of νt is ∝ (y+)4 rather than ∝ (y+)3, but no attempt
to correct this slight discrepancy is made here.

At first sight it might be surprising that, in contrast to the other models outlined
above, the grid size does not enter the eddy viscosity (35), which makes νt a function
of one characteristic SGS quantity (Q33) only instead of two. This, however, is not
inconsistent with the physical properties of near-wall turbulence. Since the wall layer
tends to establish a universal behaviour if scaled in wall units, all quantities like
averaged velocity profiles or energy spectra collapse in non-dimensional form. This
implies that for a given dimensionless grid size ∆x+ the corresponding dimensionless
SGS stress Q+

33 is uniquely determined and vice versa. Hence only one degree of
freedom is left on which the SGS eddy viscosity may depend, if the problem is recast
in wall units. It must be stressed, however, that (35) can only be physically meaningful
in the wall region, since the universal scaling using ν and uτ has no significance within
the outer flow.

6.1. A-priori test of the models

The three models outlined above were examined in an a priori test using the database
of SII. Figure 17 gives the results for εFS1,13 obtained from the DNS data and models A,
B, and C, respectively. It is readily seen that the pronounced negative minimum within
the buffer layer is only captured satisfactorily with the new formulation C, although
a global, weakly negative minimum is observed for model B as well. For model A
the quantity εFS1,13 is non-negative throughout and does not exhibit the characteristic
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Figure 18. SGS dissipation εMS due to mean rates of strain (a) and εFS due to fluctuating rates of
strain (b). Comparison of DNS results with various SGS models. Results for simulation II.

minimum. It may hence be concluded that the definition A of the eddy viscosity is
not suited for an adequate SGS modelling in near-wall turbulence.

It must be emphasized that the above conclusion concerning model A is not
in contradiction with figure 10, where a negative correlation between all Q̃ii (no

summation) and ˜̄S 13 was found. From that result one might have suspected that
incorporating the SGS energy into the eddy viscosity provides the desired negative

correlation between ˜̄S13 and τ̃mod13 . However, the correlation coefficients between ˜̄S13

and τ̃mod13 shown in figure 17 reveal that model A exhibits a high positive correlation
throughout. This is due to the fact that in (32) the square root of ESGS enters, rather
than ESGS , which results in considerably altered phase relations and correlation
coefficients.

To provide a more global comparison of the various models, results for εMS and εFS

are displayed in figure 18. Note that the model coefficients have been adjusted such
that εFS + εMS , integrated over the whole channel, is identical with the DNS value as
a consequence of (28). Figure 18 again confirms that model C performs best in the
near-wall region. Although a kink in the curve for εFS is also found for model B, it
is much more pronounced for model C. In the curve for model A such a kink is not
discernible at all, as was to be expected from the results shown in figure 17.

The above results for model C indicate that the inverse cascade of kinetic energy
in the buffer layer may in principle be accounted for by an eddy-viscosity ansatz.
Moreover it becomes clear that the performance of eddy-viscosity models in the
near-wall region crucially depends on the proper choice of the characteristic scales.
Clearly, model C, which was derived from the present analysis of the turbulent energy
budget, is valid in the near-wall region only, and cannot be applied in the outer
layer of a wall-bounded flow at high Reynolds number. Consequently, an SGS model
based on the form C of the eddy viscosity would have to be coupled with a common
subgrid model for the outer flow in an actual LES. This suggests that subgrid models
employed in complex flows may have to be adjusted to the various flow regimes in a
very substantial way.

7. Concluding remarks
In the present paper a detailed numerical study is presented which aims at clarifying

several issues relevant to the large-eddy simulation of wall-bounded turbulence. The
study contains (i) a thorough analysis of the turbulent energy budget in the near-wall
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flow, (ii) a priori and a posteriori tests of current subgrid models, and (iii) a more
fundamental examination of the eddy-viscosity ansatz.

The analysis of the energy budget focused on the inverse cascade of kinetic energy
within the buffer layer already described in a previous paper (Härtel et al. 1994).
The analysis was primarily based on DNS data of turbulent channel flow at a wall
Reynolds number of Reτ = 210. To assess the Reynolds-number dependence of the
results, two further direct simulations at Reτ = 115 and Reτ = 300 were conducted
and analysed. A significant Reynolds-number dependence could not be observed.
The analysis reveals that the inverse transfer of kinetic energy almost exclusively
affects the energy budget of the streamwise GS velocity, and that it is due to the
SGS stress aligned with the mean rate of strain. To examine the contribution of this
stress component to the energy transfer in more detail, the individual terms in the
respective transport equation were evaluated. It turned out that the correlation of the
wall-normal SGS stress and the wall-normal derivative of the streamwise GS velocity
plays the decisive role in the occurrence of the inverse cascade.

The a priori test of three more widely utilized SGS models showed that none of
them is able to account for the inverse energy cascade. One of the models, the classical
Smagorinsky model, was employed in a series of LES of turbulent channel flow at
different Reynolds numbers. The results of these simulations feature significant errors
in the near-wall region as was to be expected from the previous a priori test. We
assume that these errors are mainly caused by the deficiencies of the model in the
buffer layer. Consistent with what was found in the a priori test and in the analysis of
the energy budget, the key features of the LES results in the near-wall region appear
to be essentially unaffected by the Reynolds number. This is true despite the fact
that the LES results in the core flow improve significantly with increasing Reynolds
number. Concerning the comparison of LES data with unfiltered and filtered reference
data, it was pointed out that conclusive results can only be obtained with the latter.

Motivated by the observed deficiencies of the eddy-viscosity models, the eddy-
viscosity ansatz was examined in a more fundamental manner. Three definitions of
the eddy viscosity were investigated which differ with respect to the characteristic
scales employed. For all three models DNS data were used to evaluate these scales,
which kept the study clear of additional modelling assumptions. Two of the definitions
were previously suggested in the literature, while the third one was derived directly
from the present analysis of the near-wall energy budget. Only the latter definition
was found to give satisfactory results in the near-wall region, which shows that the
proper choice of the characteristic scales is of utmost importance for the subgrid
modelling in this flow regime. Since the newly derived eddy viscosity can be applied
in the near-wall flow only, a possible new subgrid model based on this definition
of the eddy viscosity would have to be coupled with a ‘common’ subgrid model for
the outer flow. An important finding is that the inverse cascade of energy may in
principle be accounted for by an eddy-viscosity ansatz.

The present analysis is confined to flows at moderate Reynolds numbers where DNS
data are available. However, since the results did not exhibit an appreciable Reynolds-
number dependence, we assume that the findings may essentially be generalized to
flows at higher Reynolds numbers which are of more practical interest. It should be
emphasized that the rather small filter widths employed in the present study may
hardly be affordable in practical applications. Since larger filter widths enhance the
inverse energy cascade, model deficiencies in the near-wall flow may then become
much more severe. In the present paper no improved subgrid model was presented
which can directly be applied in a LES, but a possible line of development is indicated
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by the new form of the eddy viscosity. The respective characteristic scales, which were
directly taken from the DNS results here, may be obtained in an approximate manner
by some test filtering similar to that one employed in the dynamic Smagorinsky model.

Part of this work has been supported by the Deutsche Forschungsgemeinschaft.
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Härtel, C. & Kleiser, L. 1997 Galilean invariance and filtering dependence of near-wall grid-
scale/subgrid-scale interactions in large-eddy simulation. Phys. Fluids 9, 473–475.
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